STOPPED REPORTING: 09/21/2022
Data Sources: Case data from . As of March 3, 2021, testing data is drawn from . Prior to that, the data source was the .
Learn more about why the positivity rates shown on our site may differ from state calculations
Conceptualized by: International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health (): Melissa Higdon, Maria Deloria Knoll, Maria Garcia Quesada, Julia Bennett
7-Day Averages: The CRC calculates the rolling 7-day average separately for each daily numerator and denominator data point, and then for each day calculates the percentage over the rolling averages. Some states may be calculating the positivity percentage for each day, and then doing the rolling 7-day average. We use our approach because testing capacity issues and uneven reporting cadences create many misleading peaks and valleys in the data. Since we want to give a 7-day average, it is fairer to average the raw data and then calculate the ratios. Otherwise, days when a large number of negative tests are released at once—resulting in very low positivity—will have the same weight as days when data was steadily released, and the overall result is going to be lower. Our approach is applied to all our testing data to correct for the release of uneven data.
Positivity rates can tell us whether a state’s testing capacity is sufficient. Ideally, a state should be meeting or exceeding the recommended positivity rate, which the WHO has set at 5%. A positivity rate over 5% indicates a state may only be testing the sickest patients who seek out medical care, and are not casting a wide enough net to identify milder cases and track outbreaks.
Percent positivity can also help us determine if an increase in cases is simply the result of expanded testing or if it signals increased transmission of the virus. If we see the percentage of positive tests begin to rise, it indicates insufficient testing to find infections that may be occurring. Not finding these infections may mean that the virus is transmitting without intervention, which can lead to future case growth.
Specifically:7-Day Averages: The CRC calculates the rolling 7-day average separately for each daily numerator and denominator data point, and then for each day calculates the percentage over the rolling averages. Some states may be calculating the positivity percentage for each day, and then doing the rolling 7-day average. We use our approach because testing capacity issues and uneven reporting cadences create many misleading peaks and valleys in the data. Since we want to give a 7-day average, it is fairer to average the raw data and then calculate the ratios. Otherwise, days when a large number of negative tests are released at once—resulting in very low positivity—will have the same weight as days when data was steadily released, and the overall result is going to be lower. Our approach is applied to all our testing data to correct for the release of uneven data.